Diterpenoid tanshinones and phenolic acids from cultured hairy roots of Salvia miltiorrhiza Bunge and their antimicrobial activities.

نویسندگان

  • Jianglin Zhao
  • Jingfeng Lou
  • Yan Mou
  • Peiqin Li
  • Jianyong Wu
  • Ligang Zhou
چکیده

Four diterpenoid tanshinones and three phenolic acids were isolated from the crude ethanol extract of the cultured hairy roots of Salvia miltiorrhiza Bunge by bioassay-guided fractionation. By means of physicochemical and spectrometric analysis, they were identified as tanshinone ΙΙA (1), tanshinone Ι (2), cryptotanshinone (3), dihydrotanshinone Ι (4), rosmarinic acid (5), caffeic acid (6), and danshensu (7). These compounds were evaluated to show a broad antimicrobial spectrum of activity on test microorganisms including eight bacterial and one fungal species. Among the four tanshinones, cryptotanshinone (3) and dihydrotanshinone Ι (4) exhibited stronger antimicrobial activity than tanshinone ΙΙA (1) and tanshinone Ι (2). The results indicated that the major portion of the antimicrobial activity was due to the presence of tanshinones and phenolic acids in S. miltiorrhiza hairy roots, which could be used as the materials for producing antimicrobial agents for use in agricultural practice in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ag+ as a more effective elicitor for production of tanshinones than phenolic acids in Salvia miltiorrhiza hairy roots.

Phenolic acids and tanshinones are two groups of bioactive ingredients in Salvia miltiorrhiza Bunge. As a heavy metal elicitor, it has been reported that Ag+ can induce accumulations of both phenolic acids and tanshinones in S. miltiorrhiza hairy roots. In this study, the effects of Ag+ treatment on accumulations of six phenolic acids and four tanshinones in S. miltiorrhiza hairy roots were inv...

متن کامل

Enhancing diterpenoid concentration in Salvia miltiorrhiza hairy roots through pathway engineering with maize C1 transcription factor.

Tanshinones are valuable natural diterpenoids from danshen (Salvia miltiorrhiza Bunge). Here, it was demonstrated that maize transcription factor C1 improved the accumulation of tanshinones by comprehensively upregulating the pathway genes, especially SmMDC and SmPMK in danshen hairy roots, yielding total tanshinones up to 3.59mg g(-1) of dry weight in line C1-6, a 3.4-fold increase compared wi...

متن کامل

Effects of Abscisic Acid, Gibberellin, Ethylene and Their Interactions on Production of Phenolic Acids in Salvia miltiorrhiza Bunge Hairy Roots

Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study...

متن کامل

The Biosynthetic Pathways of Tanshinones and Phenolic Acids in Salvia miltiorrhiza.

Secondary metabolites from plants play key roles in human medicine and chemical industries. Due to limited accumulation of secondary metabolites in plants and their important roles, characterization of key enzymes involved in biosynthetic pathway will enable metabolic engineering or synthetic biology to improve or produce the compounds in plants or microorganisms, which provides an alternative ...

متن کامل

Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis.

Biotic elicitors can be used to stimulate the production of secondary metabolites in plants. However, limited information is available on the effects of biotic elicitors from endophytic fungi on their host plant. Trichoderma atroviride D16 is an endophytic fungus isolated from the root of Salvia miltiorrhiza and previously reported to produce tanshinone I (T-I) and tanshinone IIA (T-IIA). Here,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2011